Lecture 9: Intro to Python

What is R?

- R is a programming language specifically designed for statistics and data analysis
 - Objects for storing data, and functions for interacting with data, are fundamental
 - R is very good at graphics and visualization
 - R is easily extended. Users can write and share their own functions and packages
- We can interact with R through IDEs like RStudio

Who uses R?

- R is widely used in statistical research and academia
- R is also widely used in applications of statistics, such as
 - Biology and bioinformatics
 - Ecology, forestry, and environmental science
 - Psychology
 - Sociology
- R is used in a variety of areas outside research, by government agencies, pharmaceutical companies, insurance companies, etc.

What other options exist?

- SAS Le biostat, clinical
- Stata econ
- SPSS 2 Prychology
- Python E data science
- Julia
- Matlab 2- applied meth, engineering
- Many others...

What is Python

- Python is a general-purpose programming language
- Like R, python has a wide range of packages to extend functionality
- Certain Python packages allow for sophisticated data analysis and modeling
 - SciPy,NumPy
 - scikit-learn, statsmodels, pytorch
 - pandas
 - matplotlib

R vs. Python

My own, *personal*, preferences:

R is good for

- Data visualization and wrangling
- Classical statistics
- Statistical inference
- New statistical methods

Python is good for

- General-purpose programming
- Challenging data types (e.g. images)
- Prediction and machine learning

Why do we teach R?

- Excellent support for the material covered in a statistics degree
- Benefits to using a consistent language across courses
- Valuable for a wide variety of future careers
- The primary research tool for most (if not all) the faculty

A taste of Python

Recall our code from the first class:

```
1 M <- 10 # number of people at the party
2 hats <- 1:M # numbered hats
3 nsim <- 10000 # number of simulations
4 results <- rep(0, nsim) # vector to store the results
5
6 for(i in 1:nsim){
7 randomized_hats <- sample(hats, M, replace = FALSE)
8 results[i] <- sum(randomized_hats == hats) > 0
9 }
10
11 mean(results)
```

[1] 0.6296

A taste of Python

Here is the same code, written in Python

0.634

What similarities and differences do you notice? Pythen: = for assignment R: 2- (ar =) for assignment

Step 1: representing the hats

- hats is a 1-dimensional array (similar to a vector in R)
- Python is *O-indexed*: the first entry is hats [0]

Step 2: everyone draws a random hat

array([6, 8, 5, 2, 1, 0, 4, 7, 9, 3])

np. random. choice works like R's sample function
 Booleans in Python are True and False (as opposed to TRUE and FALSE, or T and F)
 collection of objects (functions a function in the many library np. random

Step 3: check who got their original hat

• NumPy arrays allow for "vectorized" operations, like in R

$\alpha = \left[- \right]$

Step 4: iteration

 We don't use the curly braces { }. Instead we use whitespace (four spaces is standard, you just have to be consistent)

Using Python through RStudio

• You can make Python chunks in Quarto documents, just like R chunks:

1	<pre>```{python}</pre>
2	
3	

Class activity

https://sta279-

f23.github.io/class_activities/ca_lecture_9.html