
Lecture 9: Intro to
Python

What is R?

R is a programming language specifically designed for
statistics and data analysis

Objects for storing data, and functions for interacting
with data, are fundamental

R is very good at graphics and visualization

R is easily extended. Users can write and share their
own functions and packages

We can interact with R through IDEs like RStudio

Who uses R?

R is widely used in statistical research and academia

R is also widely used in applications of statistics, such as

Biology and bioinformatics

Ecology, forestry, and environmental science

Psychology

Sociology

R is used in a variety of areas outside research, by
government agencies, pharmaceutical companies,
insurance companies, etc.

What other options exist?

SAS

Stata

SPSS

Excel

Python

Julia

Matlab

Many others…

I
biostat

,
clinical

I econ

2- psychology

L business-

I date science

I applied math
, engineering

What is Python

Python is a general-purpose programming language

Like R, python has a wide range of packages to extend
functionality

Certain Python packages allow for sophisticated data
analysis and modeling

SciPy, NumPy
scikit-learn, statsmodels, pytorch
pandas
matplotlib

R vs. Python
My own, personal, preferences:

R is good for

Data visualization and
wrangling

Classical statistics

Statistical inference

New statistical methods

Python is good for

General-purpose
programming

Challenging data types
(e.g. images)

Prediction and machine
learning

Why do we teach R?

Excellent support for the material covered in a statistics
degree

Benefits to using a consistent language across courses

Valuable for a wide variety of future careers

The primary research tool for most (if not all) the faculty

A taste of Python
Recall our code from the first class:

M <- 10 # number of people at the party1
hats <- 1:M # numbered hats2
nsim <- 10000 # number of simulations3
results <- rep(0, nsim) # vector to store the results4

5
for(i in 1:nsim){6
 randomized_hats <- sample(hats, M, replace = FALSE)7
 results[i] <- sum(randomized_hats == hats) > 08
}9

10
mean(results)11

[1] 0.6296

A taste of Python
Here is the same code, written in Python

What similarities and differences do you notice?

import numpy as np1
2

M = 10 # number of people at the party3
hats = np.arange(M) # numbered hats4
nsim = 10000 # number of simulations5
results = np.zeros(nsim) # to store the results6

7
for i in range(nsim):8
 randomized_hats = np.random.choice(hats, M, replace = False)9
 results[i] = np.sum(randomized_hats == hats) > 010

11
np.mean(results)12

0.634

-L similar to library) in R

00
- 3comments are the same!

no

parers-> O (no curly brackets)

O

Python :
- for assignment R : < (or =) for assignment

Step 1: representing the hats

hats is a 1-dimensional array (similar to a vector in R)

Python is 0-indexed: the first entry is hats[0]

import numpy as np1
2

M = 10 # number of people at the party3
hats = np.arange(M) # numbered hats4

5
hats6

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
hats[0]1

0
hats[1]1

1

ne

0
,
1

,
2

,
. . .

,
M-2

Step 2: everyone draws a random hat

np.random.choice works like R’s sample function

Booleans in Python are True and False (as opposed to
TRUE and FALSE, or T and F)

import numpy as np1
2

M = 10 # number of people at the party3
hats = np.arange(M) # numbered hats4

5
randomized_hats = np.random.choice(hats, M, replace = False)6

7
randomized_hats8

array([6, 8, 5, 2, 1, 0, 4, 7, 9, 3])

Sample
size

O
e

what replace

~ -package

collection of objects/functions E function in

in the numpy library up .
randen

Step 3: check who got their original hat

NumPy arrays allow for “vectorized” operations, like in R

import numpy as np1
2

M = 10 # number of people at the party3
hats = np.arange(M) # numbered hats4

5
randomized_hats = np.random.choice(hats, M, replace = False)6
randomized_hats7

array([5, 6, 0, 3, 1, 8, 9, 7, 2, 4])
randomized_hats == hats1

array([False, False, False, True, False, False, False, True, False,
 False])

np.sum(randomized_hats == hats)1
2

⑧

8 O

a
= 2

. -3

Step 4: iteration

range(nsim) is similar to 1:nsim in R

We don’t use the curly braces { }. Instead we use
whitespace (four spaces is standard, you just have to be
consistent)

import numpy as np1
2

M = 10 # number of people at the party3
hats = np.arange(M) # numbered hats4
nsim = 10000 # number of simulations5
results = np.zeros(nsim) # to store the results6

7
for i in range(nsim):8
 randomized_hats = np.random.choice(hats, M, replace = False)9
 results[i] = np.sum(randomized_hats == hats) > 010

11
np.mean(results)12

0.6282

x rep (0, usim) in R

-
it entry in esultis is
The if at least are person got their
False ofhause

:

original nat

Using Python through RStudio

You can make Python chunks in Quarto documents, just
like R chunks:

```{python}1
2

```3


Class activity
https://sta279-
f23.github.io/class_activities/ca_lecture_9.html

