Lecture 9: Intro to
Python

What is R?

e R is a programming language specifically designed for
statistics and data analysis

= Objects for storing data, and functions for interacting
with data, are fundamental

= R is very good at graphics and visualization

= R is easily extended. Users can write and share their
own functions and packages

e We can interact with R through IDEs like RStudio

Who uses R?

e R is widely used in statistical research and academia
e R is also widely used in applications of statistics, such as
= Biology and bioinformatics
= Ecology, forestry, and environmental science
= Psychology
= Sociology

e R is used in a variety of areas outside research, by
government agencies, pharmaceutical companies,
Insurance companies, etc.

What other options exist?

o SAS = b{65J¢\X”/ AR

o Stata (= kLo

e SPSS e e

e Excel £ Disiness

e Python = ocde Scens

e Julia

e Matlab Lo epo\d e, 2rgineRling

e Many others...

What is Python

e Python is a general-purpose programming language

e Like R, python has a wide range of packages to extend
functionality

e Certain Python packages allow for sophisticated data
analysis and modeling

= Sc1iPy, NumPy

» scikit-learn, statsmodels, pytorch
» pandas

» matplotlib

R vs. Python

My own, personal, preferences:

R is good for Python i1s good for

e Data visualization and e General-purpose
wrangling programming

e Classical statistics e Challenging data types

e Statistical inference (e.9. Images)

e Prediction and machine
learning

e New statistical methods

Why do we teach R?

o Excellent support for the material covered in a statistics
degree

e Benefits to using a consistent language across courses
e Valuable for a wide variety of future careers

e The primary research tool for most (if not all) the faculty

A taste of Python

Recall our code from the first class:

M <- 10 # number of people at the party
hats <- 1:M # numbered hats

nsim <- 10000 # number of simulations
results <- rep(0, nsim) # vector to store the results

for(i in l:nsim){
randomized hats <- sample(hats, M, replace = FALSE)
results[i] <- sum(randomized hats == hats) > 0

}

mean(results)

[1] 0.6296

A taste of Python

Here is the same code, written in Python

import numpy as np &— Sv—leC Yo \NQQ%53<TH’;> T~ _
D&G§1O # number of people at the party %S
hats(j)np.arange(M) # numbered hats COwn N NS
nsim = 10000 # number of simulations
results = np.zeros(nsim) # to store the result
N\GB
pos= for i in range(nsim{E) (o CUC\B QﬂEKQMQ}is
andomized hats = np.random.choice(hats, M, replace = False)
esults[i] = np.sum(randomized hats == hats) > 0

np.mean(results)

0.634

What similarities and differences do you notice?

’QéﬂAw* — fer &S%@mwm%v% (L* / — (ar :> fer &&%yw&ﬁ%

Step 1: representing the hats

import numpy as np

M = 10 # number of people at the party
hats = np.arange(M) # numbered hats

e ———
hats G;\fll”’? M=
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
hats[0]

hats[1]
1

e hats is a 1-dimensional array (similar to a vector in R)

e Python is @-indexed: the first entry is hats [0]

Step 2: everyone draws a random hat

import numpy as np

M = 10 # number of people at the party \ f;?ﬁl
hats = np.arange(M) # numbered hats gwm»OQ'
¢
randomized hats = np.random.choice(E%E%; M, replace = False)
M
randomized hats ot ﬁipl&alf

arraY([6l 8/ 5, 2/]-l 0, 4! 7, 9l 3])
e NP. rﬁandom. choice works like R’'s samp Le function

-
/ Booleans in Python are True™and Fa lse (as opposed to
pecrdzop TRUE and FALSE, or T and F)

COUQckﬁ»\ﬁﬁ' CXG&JS/f@pwcith . fnchen n

/i\/\ >(\,\@/ f\u\/\f'g \R\OJ—&_/\A \/\()ﬁ J\O\\/\aﬂ/\/\—\

Step 3: check who got their original hat

import numpy as np

M = 10 # number of people at the party
hats = np.arange(M) # numbered hats

randomized hats = np.random.choice(hats, M, replace = False)
randomized hats

array([5, 6, o,(:) 1, 8, 9, 7, 2, 4])

randomized hats == hats
array([False, False, False, False, False, False, False,
False])
np.sum(randomized hats == hats)

2

e NumPy arrays allow for “vectorized” operations, like in R

Step 4: iteration

import numpy as np

M = 10 # number of people at the party
hats = np.arange(M) # numbered hats
nsim = 10000 # number of simulations

results =\EE;33£SE£EEET) # to store the results

)\\ OV\\M ’\f\(z.,-
for i in range(nsim): FQ§>Q / > \>

randomized hats = np.random.choice(hats, M, replace = False)

results[i] = np.sum(randomized hats == hats) > 0
/—/\
np.mean(results) Ikie -Qﬂﬁ73 AN diyj}H§> {g
0.6282 T e (”(; ot 10c.d O P@(Sﬁf\ 030% M\r
\cXe chense’ cfQ%bm\\ e T

e range(nsim) is similarto 1:nsimin R

e We don’t use the curly braces { }. Instead we use
whitespace (four spaces is standard, you just have to be
consistent)

Using Python through RStudio

e You can make Python chunks in Quarto documents, just
like R chunks:

""" {python}

Class activity

https://sta279-
f23.github.io/class_activities/ca_lecture_9.html

