
Lecture 2

Warm-up question

A roulette wheel has 38 slots numbered 00, 0, and 1–36.
Two are green, 18 are red, and 18 are black.

If a gambler bets based on color, the return on a $1 bet
is $2

A gambler has $50, and will continuously bet $1 on red
until they double their money (have $100) or lose the
money they came with

What is the probability the gambler doubles their money?

Question: Without calculating probabilities, how could you
design an experiment to estimate this probability?

Designing an experiment
Sep1 : need

a ralette wheel ! (and many)
Creator in R containing colorsil

Step2 : spin the wheel sample?)

Ste3 : update money

if spin is red : money
+

if spir is notred
:

money-l

Step 4 - keep spinning until money
= 100 or many

=

8
-

cloop
?)

Step S : Repeat many
times ! Cloop ?)

-

Step 1: representing the roulette wheel

rep repeats a value a specified number of times

c() combines vectors into a single vector

wheel <- c(rep("green", 2), rep("black", 18), rep("red", 18))1
2

wheel3
 [1] "green" "green" "black" "black" "black" "black" "black" "black"
"black"
[10] "black" "black" "black" "black" "black" "black" "black" "black"
"black"
[19] "black" "black" "red" "red" "red" "red" "red" "red"
"red"
[28] "red" "red" "red" "red" "red" "red" "red" "red"
"red"
[37] "red" "red"

0

Step 2: spin the wheel!
spin <- sample(wheel, size = 1)1

2
spin3

[1] "red"

if spin is red
, money

= money H

if sain is not red
, money

: money-l

Step 3: change in money

if the result was red, gain a dollar

otherwise, lose a dollar

money <- 501
spin <- sample(wheel, size = 1)2

3
if(spin == "red"){4
 money <- money + 15
} else {6
 money <- money - 17
}8

9
spin10

[1] "red"
money1

[1] 51

start at $50) money= 50

O
C
⑧ ⑧

-
O

Step 3: change in money
Another way of writing the conditional statement:

money <- 501
spin <- sample(wheel, size = 1)2

3
money <- ifelse(spin == "red", money + 1, money - 1)4

5
spin6

[1] "red"
money1

[1] 51

nne-

condition to if condition otherwise do this
check is true

Step 4: keep spinning
The gambler continues to bet until they have $0 or $100.

Question: Is a for loop appropriate for iterating the
betting process?

· ferloop : repeats code a fixed # of times

while loop :
repeats code while a condition is the

-

Step 4: keep spinning

while loop: repeat the process until the condition is true

money <- 50 # starting money1
2

while(money > 0 & money < 100){3
 spin <- sample(wheel, size = 1)4
 money <- ifelse(spin == "red", money + 1, money - 1)5
}6

7
money8

[1] 0

a

spin until manly
==
0 or

mancy== 100

nee
make Sie to update money each time,

otherwise loop might run forever

Step 5: repeat the process

What should I check at each iteration?

set.seed(279)1
2

nsim <- 10003
results <- rep(NA, nsim)4

5
for(i in 1:nsim){6
 money <- 50 # starting money7

8
 while(money > 0 & money < 100){9
 spin <- sample(wheel, size = 1)10
 money <- ifelse(spin == "red", money + 1, money - 1)11
 }12
 13
 results[i] <- ...14
}15

-
vector to stare results

money
== 100

Step 5: repeat the process
set.seed(279)1

2
nsim <- 10003
results <- rep(NA, nsim)4

5
for(i in 1:nsim){6
 money <- 50 # starting money7

8
 while(money > 0 & money < 100){9
 spin <- sample(wheel, size = 1)10
 money <- ifelse(spin == "red", money + 1, money - 1)11
 }12
 13
 results[i] <- money == 10014
}15

16
mean(results)17

[1] 0.008

wheel <- elrep("green" ,
2)

,
rep("red" , 18) , rep ("black" , 183)

results : TRUE FALSE FALSE --- -

2 O ⑧ ..

Fraction of IS : average of rectors

A new question
In STA 112, you learned about the simple linear regression
model:

Question: What assumptions does this model make?

= + +Yi β0 β1Xi εi

· constant variance of Ei

3 E: NC0
,
04

Normality of Ei

·E
:

Have mean

shape (linearity)
·randomness

· independence

A new question
In STA 112, you learned about the simple linear regression
model:

Question: How important is it that ? Does it
matter if the errors are not normal?

= + +Yi β0 β1Xi εi

∼ N(0,)εi σ2

Activity

Activity: With a neighbor, brainstorm how you could use
simulation to assess the importance of the normality
assumption (you do not need to write code!).

How would you simulate data?

What result would you measure for each run of the
simulation?

= + +Yi β0 β1Xi εi

Activity

How would you study the importance of the normality
assumption?

= + +Yi β0 β1Xi εi

· hypothesis testing Clock & distribution of p-values

confidence interval (e .g . a 95 % cit
- shald capture the B 95 % of the fine!

simulate data with different distributions for Ei
e . g .

Normal
,
&Y
,
exponential , etc .

· Fit my
linear morel

,
calculate a 95%0 CI , and

check whether CI contains B ,

·Repeat simulation many
times

compare coverage
across distributions for Ei

Simulating data
To start, simulate data for which the normality assumption
holds:

runif(n, min=0, ,max=1) samples uniformly
between 0 and 1

rnorm(n, mean=0, sd=1) samples

n <- 100 # sample size1
beta0 <- 0.5 # intercept2
beta1 <- 1 # slope3

4
x <- runif(n, min=0, max=1)5
noise <- rnorm(n, mean=0, sd=1)6
y <- beta0 + beta1*x + noise7

Xi

∼ N(0, 1)εi

Fit a model
n <- 100 # sample size1
beta0 <- 0.5 # intercept2
beta1 <- 1 # slope3

4
x <- runif(n, min=0, max=1)5
noise <- rnorm(n, mean=0, sd=1)6
y <- beta0 + beta1*x + noise7

8
lm_mod <- lm(y ~ x)9
lm_mod10

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 0.647 0.437

Calculate confidence interval

Question: How can we check whether the confidence
interval contains the true ?

lm_mod <- lm(y ~ x)1
2

ci <- confint(lm_mod, "x", level = 0.95)3
ci4

 2.5 % 97.5 %
x -0.1957341 1.069806

β1

Calculate confidence interval

Question: How can we check whether the confidence
interval contains the true ?

lm_mod <- lm(y ~ x)1
2

ci <- confint(lm_mod, "x", level = 0.95)3
ci4

 2.5 % 97.5 %
x -0.1957341 1.069806

β1
ci[1] < 1 & ci[2] > 11

[1] TRUE

Repeat!
nsim <- 10001
n <- 100 # sample size2
beta0 <- 0.5 # intercept3
beta1 <- 1 # slope4
results <- rep(NA, nsim)5

6
for(i in 1:nsim){7
 x <- runif(n, min=0, max=1)8
 noise <- rnorm(n, mean=0, sd=1)9
 y <- beta0 + beta1*x + noise10

11
 lm_mod <- lm(y ~ x)12
 ci <- confint(lm_mod, "x", level = 0.95)13
 14
 results[i] <- ci[1] < 1 & ci[2] > 115
}16
mean(results)17

Repeat!

What should we do next?

nsim <- 10001
n <- 100 # sample size2
beta0 <- 0.5 # intercept3
beta1 <- 1 # slope4
results <- rep(NA, nsim)5

6
for(i in 1:nsim){7
 x <- runif(n, min=0, max=1)8
 noise <- rnorm(n, mean=0, sd=1)9
 y <- beta0 + beta1*x + noise10

11
 lm_mod <- lm(y ~ x)12
 ci <- confint(lm_mod, "x", level = 0.95)13
 14
 results[i] <- ci[1] < 1 & ci[2] > 115
}16
mean(results)17

[1] 0.951

Course goals

Develop computing skills to work with data and answer
statistical questions

Emphasize reproducibility and good coding practices

Introduce other important computing tools for statistics
and data science (Python, SQL, Git)

What this course isn’t:

An exhaustive list of R or Python functions

A computer science course

A deep dive into how R actually works

Tentative topics

Simulation

Intro to Python

Data wrangling and manipulation

Intro to SQL

Version control and reproducibility

Working with text data

Time permitting: select advanced topics

Course components
Component Weight

Homework 50%

Midterm exam 10%

Final exam 20%

Project 20%

Diversity and inclusion
In this class, we will embrace diversity of age, background,
beliefs, ethnicity, gender, gender identity, gender
expression, national origin, neurotype, race, religious
affiliation, sexual orientation, and other visible and non-
visible categories. The university and I do not tolerate
discrimination.

You deserve to be addressed in the manner you prefer.
To guarantee that I address you properly, you are
welcome to tell me your pronoun(s) and/or preferred
name at any time, either in person or via email.

