Lecture 2

Warm-up question

e A roulette wheel has 38 slots numbered 00, O, and 1-36.
Two are green, 18 are red, and 18 are black.

e If a gambler bets based on color, the return on a $1 bet
is $2

e A gambler has $50, and will continuously bet $1 on red
until they double their money (have $100) or lose the
money they came with

e What is the probability the gambler doubles their money?

Question: Without calculating probabilities, how could you
design an experiment to estimate this probability?

Designing an experiment

Step 4. reed o colette nee|! (erd W\”\‘%D
Grectes A 2 QQMLMATP? golcrg?\

S%QP ‘- Spve e VAA@QA (&awwp@7>
drep > Pl meney
N Spin i Q0 entd)
A\Q\ gp,r\ \\S Y\OJ(- FQB ‘/ /V\Q(\Q—Lé - \
A (A Bl aeney = OO0 oy T
Step A - Aeap Sp 4 v 4 ef 4 =0

(LOOPWL

Step S fegerd ameny Himes! (lop?)

Step 1: representing the roulette wheel

wheel <- c(rep('"green", 2), rep("black", 18), rep("red", 18))

wheel

[1] "green" "green" "black" "black" "black" "black" "black" "black"
"black"
[10] "black" "black" "black" "black" "black" "black" "black" "black"
"black"

[19] "black" "black" "red" "red" "red" "red" "red" "red"
"red"

[28] "red" "red" "red" "red" "red" "red" "red" "red"
"red"

[37] "red" "red"

e 'ep repeats a value a specified number of times

*(C))) combines vectors into a single vector

Step 2: spin the wheell!

spin <- sample(wheel, size = 1)

spin

[1] "red"
& S S e) w\OV\G,\a = l/"\a’\e'a |

ig‘ me S w@% ﬁg§) m&GmCﬂ ~ mﬂcﬂﬁﬂ"\

Step 3: change in money

money <- 50 (3¥%V* aX $€M£> NwWQ%:¥5O

spin <- sample(wheel, size = 1)

if(spin == ”red”)@>
@§§§§:53>money + 1
Q:blse

money <-)money - 1

spin
[1] llredll
money

[1] 51
e if the result was red, gain a dollar

e otherwise, lose a dollar

Step 3: change in money

Another way of writing the conditional statement:

money <- 50

spin <- sample(wheel, size = 1)
money <- ifelse(spin == "red", money + 1, money - 1)
e T
coin Conden Yo & condbien cercunse. do s
P Lveod Ig,yﬂm,
[1] llredll
money

[1] 51

Step 4: keep spinning
The gambler continues to bet until they have $0 or $100.

Question: Is a Tor loop appropriate for iterating the
betting process?

Ko \ocp . repecdS oL o~ %Nﬂ@ + OWC %\‘\V“\?—)

- oknilel loep Pt (de we b ConOTP e VS e

—

Step 4: keep spinning

money <- 50 # starting money

Sprn ol veene == O« WwMQFZLOO
'z J
(A
while(money > 0 & money < 100){
spin <- sample(wheel, size = 1)
money <- ifelse(spin == "red", money + 1, money - 1)
PO S 1o POede. v\/\af\fa et IL\\W\{/
money oLecwiNe \04) V«G%v&~ con oo

[11 O

e while loop: repeat the process until the condition is true

Step 5: repeat the process

set.seed(279)

nsim <- 1000
results <- rep(NA, nsim) <&

ve ko o Stoe &SJ \tS

for(i in 1l:nsim){
money <- 50 # starting money

while(money > 0 & money < 100){

spin <- sample(wheel, size = 1)

money <- ifelse(spin == "red", money + 1, money - 1)
}
results[i] <- ... VV\ONl% == 100

}

e \What should I check at each iteration?

Step 5: repeat the process

set.seed(279)

nsim <- 1000
results <- rep(NA, nsim)

el Lo ol el e 2) ep (A" &) 12D QRS "3\833

for(i in l:nsim){
money <- 50 # starting money

while(money > 0 & money < 100){

spin <- sample(wheel, size = 1)
money <- ifelse(spin == "red", money + 1, money - 1)
}
results[i] <- money == 100
}
mean(results)
[1] 0.008 —
- =ALSE AL -~
s Trve FALSC v
250 \ o O -

Y'{C\C’{/\\&\ g&l &% i O\VQFD\% OQ \/Q_C,)Yﬁrg

A new question

In STA 112, you learned about the simple linear regression
model:

Y, =P +P1 Xi + ¢

Question: What assumptions does this model make?

Constot yofloma & & £ (O, g&\

é INee o (O

S lhepe (Rheer %9}

(\O\V\b&,./\ ~C 85

. ~0epen~denaz

A new question

In STA 112, you learned about the simple linear regression
model:

Yi:ﬁ0+ﬁl}(i+81

Question; How important is it that & ~ N(0, 0%)? Does it
matter if the errors are not normal?

Activity

Y, =P +P1 Xi + ¢

Activity: With a neighbor, brainstorm how you could use
simulation to assess the importance of the normality
assumption (you do not need to write code!).

e How would you simulate data?

e What result would you measure for each run of the
simulation?

g prtesis @%\,\2 (e @ dutsrvihon ff p-veled)

ACt]V]ty - Confdenes. Intenol leg. = 5% CI_\

-SWalld caphre e (/; Gy, of)ﬂ,\e,ﬁ/e\‘
Yi = o +PiXi +¢

How would you study the importance of the normality
assumption?

S vy lode Scle~ U S\Mee T dihivohes Sor £

. P\J(M\z (- V«\aﬂ)%\ , Cm\&u\&jﬂ O Glg$0 C L /0\\/\3
e Ledher C_1T C enToant 2,

(LQ() QO:; S \ rv\u\bx%ﬁf\ W\a‘f\é '}_\\\\N\Q;S
fer &0

Compoi cosrop eSS dustubshens

Simulating data

To start, simulate data for which the normality assumption
holds:

n <- 100 # sample size
betal0 <- 0.5 # intercept
betal <- 1 # slope

X <- runif(n, min=0, max=1)

noise <- rnorm(n, mean=0, sd=1)
y <- betal0 + betal*x + noise

e runif(n, min=0, ,max=1) samples X; uniformly
between © and 1

e rnorm(n, mean=0, sd=1) samples ¢ ~ N(0, 1)

Fit a model

n <- 100 # sample size
betal <- 0.5 # intercept
betal <- 1 # slope

X <- runif(n, min=0, max=1)
noise <- rnorm(n, mean=0, sd=1)
y <- betal + betal*x + noise

Im mod <- Im(y ~ X)
lm mod

Call:
Im(formula = y ~ X)

Coefficients:
(Intercept) X
0.647 0.437

Calculate confidence interval

Im mod <- 1lm(y ~ X)

ci <- confint(lm mod, "x", level = 0.95)
ci

2.5 % 97.5 %
x =0.1957341 1.069806

e Question: How can we check whether the confidence
interval contains the true [3; ?

Calculate confidence interval

Im mod <- 1lm(y ~ X)

ci <- confint(lm mod, "x", level = 0.95)
ci

2.5 % 97.5 %
x =-0.1957341 1.069806

e Question: How can we check whether the confidence
interval contains the true [3; ?

ci[l] < 1 & ci[2] > 1
[1] TRUE

Repeat!

nsim <- 1000

n <- 100 # sample size
betal0 <- 0.5 # intercept
betal <- 1 # slope
results <- rep(NA, nsim)

for(i in l:nsim){
X <- runif(n, min=0, max=1)
noise <- rnorm(n, mean=0, sd=1)
y <- betal + betal*x + noise

Im mod <- Im(y ~ X)
ci <- confint(lm mod, "x", level = 0.95)

results[i] <- ci[l] < 1 & ci[2] > 1

}

mean(results)

Repeat!

nsim <- 1000

n <- 100 # sample size
betal0 <- 0.5 # intercept
betal <- 1 # slope
results <- rep(NA, nsim)

for(i in l:nsim){
X <- runif(n, min=0, max=1)
noise <- rnorm(n, mean=0, sd=1)
y <- betal + betal*x + noise

Ilm mod <- 1lm(y ~ X)
ci <- confint(lm mod, "x", level = 0.95)

results[i] <- ci[l] < 1 & ci[2] > 1

}

mean(results)
[1] 0.951

e \What should we do next?

Course goals

e Develop computing skills to work with data and answer
statistical questions

e Emphasize reproducibility and good coding practices

e Introduce other important computing tools for statistics
and data science (Python, SQL, Git)

What this course isn’t:

e An exhaustive list of R or Python functions
e A computer science course

e A deep dive into how R actually works

Tentative topics

e Simulation

e Intro to Python

e Data wrangling and manipulation
e Intro to SQL

e Version control and reproducibility
e Working with text data

e Time permitting: select advanced topics

Course components
Component Weight

Homework 50%

Midterm exam 10%

Final exam 20%

Project 20%

Diversity and inclusion

In this class, we will embrace diversity of age, background,
beliefs, ethnicity, gender, gender identity, gender
expression, national origin, neurotype, race, religious
affiliation, sexual orientation, and other visible and non-
visible categories. The university and I do not tolerate
discrimination.

 You deserve to be addressed in the manner you prefer.
To guarantee that I address you properly, you are
welcome to tell me your pronoun(s) and/or preferred
name at any time, either in person or via email.

