Lecture 18: Intro to SQL

Data stored in multiple tables

The nycflights13 package contains information on flights from NYC airports in 2013. The data is stored across several data frames:

- airlines: information on each airline
- airports: information on each airport
- flights: information on each flight
- planes: information on each plane
- weather: hourly weather data

Limitations

1	nycflights13::flights	>
2	object.size() >	
3	<pre>print(units = "Mb")</pre>	

38.8 Mb

- R stores objects in memory (RAM), which can be easily accessed
- The amount of RAM on your computer is a limit on the possible size of objects
- Objects larger than a few Gb are generally too big to load

Full airlines data

The nycflights13 package contains a small subset of a database on 48 million flights. The airlines database includes the following tables:

- airports
- carriers
- flights
- planes

This data is too big to store locally, but can be on servers which we can access remotely.

Connecting to an SQL server

need; at the end of each line

An example query

```
1 SELECT
2 name,
3 SUM(1) AS N,
4 SUM(arr_delay <= 15) / SUM(1) AS pct_ontime
5 FROM flights
6 JOIN carriers ON flights.carrier = carriers.carrier
7 WHERE year = 2016 AND month = 9
8 AND dest = 'JFK'
9 GROUP BY name
10 HAVING N >= 100
11 ORDER BY pct_ontime DESC
12 LIMIT 0,4;
```

Warm-up

https://sta279-

f23.github.io/class_activities/ca_lecture_18_warmup.html

Warm-up

AS: naming (column, table, etc.)

What do you think each part of this query is doing?

General structure of an SQL query

- 1 SELECT ...
- 2 FROM ...
- 3 JOIN ...
- 4 WHERE ...
- 5 GROUP BY ...
- 6 HAVING ...
- 7 ORDER BY ...
- 8 LIMIT ...
- The SELECT and FROM clauses are *required*
- Clauses must be written in this order

L'tank the first lo raws

take 1	SELECT '*	FROM carriers	LIMIT	0, 10;		
all the	carrier				nam	e
	02Q	to local to	get		Titan Airway	S
colution 2	04Q	tour ,		Trac	dewind Aviatio	n
3	05Q	data t		Comlu	ux Aviation, A	.G
4	06Q	Μ	laster	Top Link	nas Aereas Ltd	•
5	07Q			Flair	Airlines Ltd	•
6	09Q				Swift Air, LL	C
7	0BQ				DC	A
8	0CQ			ACM AI	IR CHARTER Gmb	Н
9	0GQ Ir	nter Island Air	ways,	d/b/a Ir	nter Island Ai	r
10	0HQ	Polar Airli	nes de	e Mexico	d/b/a Nova Ai	r

- SELECT: the columns to be retrieved
- FROM: the table containing the data
- LIMIT: limit the rows to return

1 SELECT ... FROM ... LIMIT 0, 10;

What if I want the year, origin, dest, dep_delay, and arr_delay columns from the flights table?

What if I want the year, origin, dest, dep_delay, and arr_delay columns from the flights table?

1	SELECT
2	<mark>year</mark> , origin, dest,
3	dep_delay, arr_delay
4	FROM flights
5	LIMIT 0, 5;

	year	origin	dest	dep_delay	arr_delay
1	2010	EWR	OMA	181	159
2	2010	FLL	SWF	281	256
3	2010	JFK	SJU	8	5
4	2010	IAD	BNA	125	112
5	2010	LAX	FAT	82	77

```
1 SELECT
2 year, origin, dest,
3 dep_delay, arr_delay
4 FROM flights
5 LIMIT 0, 5;
```

What if I also want to calculate the difference between arrival delay and departure delay?

What if I also want to calculate the difference between arrival delay and departure delay?

	year	origin	dest	dep_delay	arr_delay	delay_diff
1	2010	EWR	OMA	181	159	-22
2	2010	FLL	SWF	281	256	-25
3	2010	JFK	SJU	8	5	-3

What are the equivalent dplyr functions?

· nutate to create the new column · select to choose a subset of columns

Converting from R to SQL

```
1 flights <- tbl(db, "flights")</pre>
 2
 3 flights |>
 4 select(year, origin, dest, dep delay, arr delay) >
      mutate(delay diff = arr delay - dep delay) >
 5
 6 \quad head() \mid >
 7
     show query()
<SQL>
SELECT
 `year`,
  `origin`,
  `dest`,
  `dep delay`,
  `arr delay`,
  `arr_delay` - `dep_delay` AS `delay_diff`
FROM `flights`
LIMIT 6
```

Calculating summary statistics

Back to our original SQL query:

1 47932811 0.8222

Calculating summary statistics

SELECT can also be used to calculate summary statistics. For example, if we want the average departure delay:

```
1 SELECT
2 AVG(dep_delay) AS mean_dep_delay
3 FROM flights
4 LIMIT 0, 10;
mean_dep_delay
```

```
1 8.9586
```

WHERE

Now suppose that I only want the mean departure delay for flights from EWR in 2013: 1 SELECT 1 SELECT

1	SELECT
2	AVG(dep_delay) AS mean_dep_delay
3	FROM flights
4	WHERE year = 2013 AND origin = 'EWR'
5	LIMIT 0, 10;
m	ean dep delay

1 14.703

What do you think should I do if I want the mean delay for each airport in November 2013?

WHERE month = 11 AND year = 2013 GROUP BY origin

GROUP BY

1	SELECT
2	AVG(dep_delay) AS mean_dep_delay
3	FROM flights
4	WHERE year = 2013 AND month = γ_{1}
5	GROUP BY origin
6	LIMIT 0, 10;

	<pre>mean_dep_delay</pre>
1	6.3220
2	2.2489
3	6.7138
4	-4.7167
5	1.6506
6	7.0526
7	2.3741
8	21.8136
9	-12.7778
10	-2.9286

Do you notice anything about this output?

GROUP BY

1	SELECT	
~		

```
2 origin,
```

- 3 AVG(dep_delay) AS mean_dep_delay
- 4 FROM flights

```
5 WHERE year = 2013 AND month = 9
```

- 6 GROUP BY origin
- 7 LIMIT 0, 10;

origin mean_dep_delay

	-	
1	ABE	6.3220
2	ABI	2.2489
3	ABQ	6.7138
4	ABR	-4.7167
5	ABY	1.6506
6	ACK	7.0526
7	ACT	2.3741
8	ACV	21.8136
9	ADK	-12.7778
10	ADQ	-2.9286

Class activity

https://sta279-

f23.github.io/class_activities/ca_lecture_18.html