
Lecture 10: Arrays and
lists

Tips for learning a new language
(e.g. Python)

Start with something (small) you know how to do in R

Figure out the translation to Python

Gives you some concrete examples to further explore

Some questions to ask:

What kinds of objects are available?

How is data stored?

How does iteration work? etc.

Investigate similarities and differences

Recap: vectors in R

Vectors only contain one type

Many functions are (or can be) vectorized

Math often works element-wise

x <- c(1, 2, 3)1
2

sqrt(x)3
[1] 1.000000 1.414214 1.732051

x + 11
[1] 2 3 4

x + c(2, 3, 4)1
[1] 3 5 7

NumPy arrays

1-dimensional arrays work like R vectors:

Only store one type

Many functions and math can be applied element-wise

import numpy as np1
2

x = np.array([1, 2, 3])3
4

np.sqrt(x)5
array([1. , 1.41421356, 1.73205081])

x + 11
array([2, 3, 4])

x + np.array([2, 3, 4])1
array([3, 5, 7])

Indexing vectors and arrays

Similarity: Square brackets [] used for both R and
Python

Difference: R is 1-indexed, Python is 0-indexed

Similarity: Indexing can be used to select multiple
entries

x <- c(1, 2, 3)1
y <- c(2, 4, 8)2
x[1:3]3

[1] 1 2 3
x = np.array([1, 2, 3])1
y = np.array([2, 4, 8])2
x[0:2]3

array([1, 2])

Indexing vectors and arrays

Question: How would I select the entries in x which are <
50?

x <- sample(1:100, 10)1
x2

 [1] 67 92 10 5 80 17 40 61 76 78

Indexing vectors and arrays

Question: How would I select the entries in x which are <
50?

x <- sample(1:100, 10)1
x2

x[x < 50]1
[1] 10 5 17 40

XLS0 gives c rector of TRUEs and FALSEs

x(x<50] returns the entries of X where XLSO is TRUE

Indexing vectors and arrays

Question: How would I write this code in Python?

x <- sample(1:100, 10)1

Indexing vectors and arrays

Similarity: Using booleans to index works similarly in R
and Python

Difference: np.arange includes the start, but not the
end

x = np.random.choice(np.arange(1, 101), 10)1
x2

array([74, 87, 32, 59, 91, 69, 5, 6, 79, 70])
x[x < 50]1

array([32, 5, 6])

-

I
by default, parange wat start

at 0
, so specify I as the start

Indexing vectors and arrays
Indexing doesn’t always behave the same:

x <- c(1, 2, 3)1
x[-1]2

[1] 2 3
x = np.array([1, 2, 3])1
x[-1]2

3

- removes firstelement

↳ wraps back crand !

Recap: lists in R
Question: How are lists different from vectors in R?

· lists can contain multiple types

↑

Crectors can contain aly and type)

lists : index by 2277 and [I

rectors
:

index by []

Recap: lists in R

Question: How would I select just the vector c(4, 5)?

x <- list(c("a", "b"), list(1, 2, c(4, 5)))1

Recap: lists in R

Question: How would I select just the vector c(4, 5)?

x <- list(c("a", "b"), list(1, 2, c(4, 5)))1

x[[2]][[3]]1
[1] 4 5

Lists in Python

Like vectors in R, arrays can only store one type

x = np.array(["a", 0, 1])1

Lists in Python
In R:

In Python:

x = list("a", 0, 1)1
x[[1]]2

[1] "a"

x = ["a", 0, 1]1
x[0]2

'a'
- remember a indexing !L

Lists in Python
In R:

In Python:

x <- list(c("a", "b"), list(1, 2, c(4, 5)))1
x[[2]][[3]]2

[1] 4 5

x = [np.array(["a", "b"]), [1, 2, np.array([4, 5])]]1
x[1]2

[1, 2, array([4, 5])]
x[1][2]1

array([4, 5])

Lists in Python
What will happen if I run the following R code?

x <- list(0, 1, 2)1
x + 12
x * 23

Lists in Python
What will happen if I run the following R code?

x <- list(0, 1, 2)1
x + 12

Error in x + 1: non-numeric argument to binary operator
x * 21

Error in x * 2: non-numeric argument to binary operator

Can't do math wi lists in R

Lists in Python
What if I run the code in Python?

x = [0, 1, 2]1
x + [1]2
x * 23

Lists in Python
What if I run the code in Python?

R vectors, and NumPy arrays, are built for math and data

Python lists are a much more general tool

x = [0, 1, 2]1
x + [1]2

[0, 1, 2, 1]
x * 21

[0, 1, 2, 0, 1, 2]

Class activity
https://sta279-
f23.github.io/class_activities/ca_lecture_10.html

