Lecture 10: Arrays and
lists

Tips for learning a new language
(e.g. Python)

e Start with something (small) you know how to do in R
e Figure out the translation to Python
= Gives you some concrete examples to further explore
= Some questions to ask:
o What kinds of objects are available?
o How is data stored?
o How does iteration work? etc.

e Investigate similarities and differences

Recap: vectors in R
X <-c¢(1l, 2, 3)

sqgrt (x)

[1] 1.000000 1.414214 1.732051
Xx + 1

[1] 2 3 4
X + c(2, 3, 4)

[1] 3 5 7

e Vectors only contain one type
e Many functions are (or can be) vectorized

e Math often works element-wise

NumPy arrays

import numpy as np
X = np.array([1l, 2, 3])

np.sqrt(x)

array([1l. , 1.41421356, 1.732050817])
x + 1

array([2, 3, 4])
X + np.array([2, 3, 4])

array([3, 5, 7])

1-dimensional arrays work like R vectors:

e Only store one type

e Many functions and math can be applied element-wise

Indexing vectors and arrays

x <- c(1, 2, 3)
y <- C(zl 4! 8)
x[1:3]

[11 123

X = np.array([1l, 2, 3])
y = np.array([2, 4, 8])
x[0:2]

array([1l, 2])

e Similarity: Square brackets []| used for both R and
Python

e Difference: R 1s 1-indexed, Python i1s O-indexed

e Similarity: Indexing can be used to select multiple
entries

Indexing vectors and arrays

X <- sample(1:100, 10)
X

[1] 67 92 10 5 80 17 40 61 76 78

Question: How would I select the entries in X which are <
507

Indexing vectors and arrays

X <- sample(1:100, 10)
X

Question: How would I select the entries in X which are <
507

x[x < 50]
[1] 10 5 17 40

X LS50 avS o oveetT oF TQUE, ~nd TALSEs
¥ Ux S0) s e eahnes of) whee X LSO s TAUE

Indexing vectors and arrays

X <- sample(1:100, 10)

Question: How would I write this code in Python?

Indexing vectors and arrays

X = np.random.choice(np.arange(l, 101), 10)
X

array([74, 87, 32, 59, 91, 69, 5,Jtéf 79, 701])
xX[x < 50] Dy d&¥ﬁykb
array([32, 5, 6]) ot O, S gpéﬁiﬁy

e Similarity: Using booleans to index works similarly in R
and Python

e Difference: np.arange includes the start, but not the
end

Indexing vectors and arrays

Indexing doesn’t always behave the same:

X <-c(1l, 2, 3)

x[-1] [— (e reS Ceshelemot
[1] 2 3

X = np.array([1l, 2, 3])

x[-1] {=— WS edh e Cend k\

Recap: lists in R

Question: How are lists different from vectors in R?

\;S%S Cerm Co~teln MULH\OLQ/MPZ)
Lisks wdex °y cc)7 e~d L[]

vect=rs L e bﬁ L A

Recap: lists in R

x <- list(c("a", "b"), list(l, 2, c(4, 5)))

Question: How would I select just the vector c(4, 5)7?

Recap: lists in R
x <- list(c("a", "b"), list(l, 2, c(4, 5)))
Question: How would I select just the vector c(4, 5)7?

x[[21]1[[31]
[1] 4 5

Lists in Python

X = np.array(["a", 0, 11])

e Like vectors in R, arrays can only store one type

Lists in Python
In R:

x = list("a", 0, 1)
X[[1]]
[1] llall

In Python:

x = ["a", 0, 1]
x[0] [Cme e

O O ema \

Lists in Python
In R:

X <- list(c("a", "b"), list(1l, 2, c(4, 5)))
x[[2]110[31]
[1] 4 5

In Python:

x = [np.array(["a", "b"1), [1, 2, np.array([4, 5]1)1]
X[1]

[1, 2, array([4, 5])]
x[11[2]

array([4, 5])

Lists in Python
What will happen if I run the following R code?

X <- list(0, 1, 2)
x + 1
X * 2

Lists in Python
What will happen if I run the following R code?

X <- list(0, 1, 2)
x + 1

Error in x + 1l: non-numeric argument to binary operator
X * 2

Error in x * 2: non-numeric argument to binary operator

Conb Gy ndn wul LsEs TA R

Lists in Python
What if I run the code in Python?

x = [0, 1, 2]
X + [1]
X * 2

Lists in Python
What if I run the code in Python?

= [0, 1, 2]
+ [1]

[0, 2, 1]

L I Ll -

[0, 2, 0, 1, 2]
e R vectors, and NumPy arrays, are built for math and data

e Python lists are a much more general tool

Class activity

https://sta279-
f23.github.io/class_activities/ca_lecture_10.html

